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Modelling of fracture phenomena in dried materials
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Abstract

Drying induced stresses may cause irreversible deformations (warping) or even fracture of dried products. This paper concerns the fracture
phenomenon in capillary porous materials by drying. A short presentation of the mechanistic model of drying elaborated earlier by author
is given. This model enables calculation of the drying induced stresses and their distribution in dried elements, and thus the identification
of the place of maximal stress appearance. The strength of dried material, being a function of the moisture content, is determined based on
the known Condon–Morse model of particle interactions. Comparison of the actual maximal stress with the admissible stress for the given
material allows formulation of the fracture criterion. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The removal of moisture from capillary porous materials
during drying is generally accompanied by mechanical phe-
nomena like warping or cracking. They abate the quality of
the dried products or even make them useless (see e.g. [3]).
The fracture of the dried products may not occur by only
very slow drying rate, but this is economically unprofitable
because of long drying time. Sometimes, some plastifying
agents are given to ceramic paste in order to neutralise the
fracture tendency during its drying. This is, however, not
possible for all dried materials.

The aim of this paper is to present a theory which enables
the prediction of the drying induced stresses from one side,
and the estimation of the dried material strength from the
other one. Both these quantities alter during drying. Three
items are discussed: first, the distribution of drying induced
stresses and their evolution in time; second, the strength of
the dried material and the criterion of fracture; and third, the
acoustic emission as a method for experimental analysis of
the fracture phenomenon.

The theory presented in this paper refers rather to mate-
rials that before drying have a condensed dispergate con-
sistence, as for example, solid suspensions, ceramic pastes
used for production of electronic elements, clay for bricks
production, etc. These media after drying and calcination
become porous with relatively high mechanical strength.

The admissible stress of dried body is determined, based
on the model of particle interactions expressed by the
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Condone–Morse curves. If the stress concentrated at the
flaw (pore) tip is greater than the admissible one, the frac-
ture of the body can take place. Thus, the fracture criterion
is derived from the comparison of the maximal stress in the
body and the determined admissible stress. Besides, basing
on the Griffith concept, a critical length of the flaw that
may grow spontaneously at a given stress is estimated.

Finally, the acoustic emission is indicated as a possible
experimental method for identification of the fracture inten-
sity during drying. It enables observation of the amplitude
distribution of acoustic signals showed the scale of the
failure phenomenon.

2. Mechanistic model of drying

One assumes that materials under drying are generally
composed of three immiscible phases: porous solid (S), liq-
uid (L), and gas (G). The gas phase is a miscible mixture
of vapour (V) and air (A) (see [16]). The construction of
mechanistic theory of drying is based on balance equations
of mass, momentum, energy, and entropy, and the principles
of thermodynamics of irreversible processes. For details, the
reader is asked to refer to the author’s previous papers as,
e.g. [4–8,12]. Here, only a final form of these equations is
presented.

The first fundamental set of equations comes from the
mass balance, and is of the form

ρ̇α = −ραε̇ − Wα
i,i + ρ̂α, α = S,L,V,A (1)

These equations state that the time alteration of αth con-
stituent mass inside the dried body per unit total volume is
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caused by the volume change (first term on r.h.s.), efflux
or influx of this mass through the boundary surface (sec-
ond term on r.h.s.), and the phase transitions (third term on
r.h.s.). It is obvious that ρ̂S = 0, ρ̂A = 0, ρ̂L + ρ̂V = 0,
WS

i = 0. Here, ε = ui,i denotes the volumetric strain and ui
the displacement of the solid body. The mass balance equa-
tions allow us to calculate the moisture content alteration
during drying if the rate equations for constituent flux Wα

i

and the phase transition ρ̂α are known.
The constituent flux was stated to be proportional to the

gradient of constituent potential µα , diminished by the grav-
ity force (acceleration) gi , i.e.

Wα
i = −Λα(µα

,i
− gi) with Λα ≥ 0 (2)

The rate of phase transition of liquid into vapour was stated
to be proportional to the difference between the constituent
potentials, i.e.

ρ̂L = −ρ̂V = −ω(µL − µV) with ω ≥ 0 (3)

The constituent potential is, in general, a function of param-
eters of state: temperature T, volumetric strain ε, and the
specific constituent content Xα = ρα/ρS, i.e.

µα = µα(T , ε,Xα) (4)

The balance of momentum is reduced here as the accelera-
tion and the kinetic energy of the dried body are assumed
to be negligibly small. Thus, the equation of momentum
balance expresses the internal equilibrium of surface forces
(stresses) and the gravitational forces, i.e.

σji,i + ρgi ≈ 0, ρ =
∑
α

ρα (5)

where σ ji is the total stress tensor. Eq. (5) serves us, af-
ter substituting the physical relations, for description of the
dried body deformation and the drying induced stresses. The
physical relation, in the case of reversible deformation by
drying or wetting, has the form (see [8])

σij = 2Mεij + ⌊
Aε − γ T (T − T0) − γXXL⌋

δij (6)

where εij = 1
2 (ui,j + ui,j ) is the strain tensor, M and A

the shear and bulk moduli of the dried body, γ T = (2M +
3A)αT, γX = (2M + 3A)αX, and αT and αX denote the
coefficients of thermal and swelling (shrinking) expansion,
respectively. It was assumed in Eq. (6) that only the moisture
in liquid phase influences the shrinkage by drying, and thus
the stresses.

The equation of energy balance, after suitable reductions,
enables calculation of the temperature field in the dried body.
Its form is as follows:

ρSṡT = (ΛTT,i),i + R + Ω (7)

where ΛT is the coefficient of heat conduction, R the volu-
metric heat supply (radiation), Ω the heat source. Entropy s

of the whole body, referred to the mass of the dry body, is
a function of the parameters of state

ṡ = ṡ(T , ε,XL) = cv

T
Ṫ − γ Tε̇ + CXẊL (8)

The heat sources arise from the phase transition and the
irreversible moisture movement

Ω = ω(µL − µV)2 +
∑
α

Λα|µα
,i − gi |2 (9)

The above system of equations is a complete one to calculate
the reversible deformations of the dried body, and the drying
induced stresses caused by the moisture removal and the
temperature field. This system has to be supplemented by
the initial and the boundary conditions.

The initial conditions state the initial value of the temper-
ature, the moisture content, and the deformation or the state
of stress. The boundary conditions state the boundary value
for stresses or deformations and the conditions for heat
and mass transfer. The mechanical boundary condition as-
sumes the stress free boundary surface (absence of external
forces). The mass transfer boundary condition determines
the convective mass exchange, i.e.

WL
n = −ΛLµL

,i |∂B = κV(µV
n − µV

∞) (10)

where κV is the coefficient of the convective vapour trans-
fer, µV

n and µV∞ the vapour potentials in the drying medium
(air) at the boundary and far from it, respectively.

The boundary condition for convective heat transfer, e.g.,
is

−ΛTT,i |∂B = κT(T∞ − T |∂B) − lWV
n (11)

where κT is the coefficient of the convective heat transfer,
l the latent heat of evaporation, T∞ the temperature of the
drying medium (air) far from the boundary.

3. Numerical example

A simple numerical example is presented to illustrate the
application of the above model for the calculation of the dry-
ing induced stresses in a convectively dried bar having rect-
angular cross-section. It is known that maximal stresses by
drying of ceramic-like materials arise during the first period
of drying. Therefore, the considerations are referred to the
first period of drying, in which the material is fully saturated,
and the main phase transition of water into vapour proceeds
on the boundary. Details concerning the adoption of the gen-
eral model to this particular boundary value problem can be
find, e.g., in [9–11], and the numerical method in [13].

Fig. 1 illustrates the isolines of normal stresses in a
quarter cross-section of the bar (symmetrical problem), at
instances of t1 = 40 min and t2 = 90 min. The isolines
allow us to identify the place where the maximal stresses
are induced. It can be seen that the biggest tensile stresses
are on the boundary surfaces in the middle of cross-section
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Fig. 1. Isolines of normal stresses σxx at instances 40 and 90 min of a
drying process.

Fig. 2. Distribution of stress: (a) σxx , (b) σyy , and (c) σxy after 5 h of
drying.

(σxx = 385 kPa for isoline 10 in the upper figure). As
the internal forces have to be semi-balanced, it is obvi-
ous that both tensile and compressive stresses arise in the
cross-section. The isoline of zero-value stress separates the
positive (tension) and negative (compression) stresses. The
area of tension stresses at the beginning is smaller than the
area of compressive stresses, however, the values of tensile
stresses are significantly bigger than the compressive ones.
In the course of drying the isoline of zero-value stress dis-
places towards the interior of the cross-section. The stresses
decrease when the distribution of the moisture content in
the cross-section becomes more uniform.

Fig. 2 shows a spatial visualisation of normal stresses
σxx , σyy and shear stresses σxy in the cross-section after
5 h of drying. Again, it is seen that the normal stresses are
tensional near the boundaries and compressional inside the
cross-section. The tensional stresses are maximal in the mid-
dle of boundary surfaces and the biggest are those on the
longer side of the cross-section. The shear stresses appear
near the corners and are maximal when the difference
between normal stresses achieves maximal value.

4. Strength of dried materials

A number of materials before drying have a condensed
dispergate structure, as for example, ceramic pastes, clay,
etc. Such materials after drying and calcination become
porous with relatively high mechanical strength.

The dispergate systems are characterised by large inter-
facial surfaces, and thus also surface energy, which is the
main reason for aggregation of particles. The liquid bridges
between adjoining particles due to capillary pressure make
additional attractive forces, which enhances aggregation.
The values of capillary forces are comparable with those of
London’s ones at atomic contacts.

Let us imagine two adjoining elementary particles placed
on the opposite sides of the cross-section α–α of a tensed
bar (Fig. 3a). If the tension force between particles A1 and
A2 is F, then the stress σ = F/A is approximately F/L2

0,
and the strain equals ε = (L − L0)/L0. For stretching of
the two adjoining particles by dL, the stress increment is

dσ = 1

L2
0

(
∂F

∂L

)
L=L0

dL = E dε (12)

where E = L−1
0 (∂F/∂L)L=L0 denotes the modulus of

elasticity.
Fig. 3b illustrates the curves of displacements of two par-

ticles. Let the equilibrium position of two particles in dry
state is 1 and 2, and in the saturated (swelled) state 1 and
2′′. In a saturated state the distance between particles is L′′.
Due to drying and shrinking the particles displace closer to
each other, e.g., from position 2′′ to 2 for the free shrink-
age, or from position 2′′ to 2′ for the constrained (not free)
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Fig. 3. Condon–Morse curves: (a) variation of potential energy versus interatomic distance; (b) stress σ by tension of samples of different saturation.

shrinkage. The constrained shrinkage takes place in the pres-
ence of stresses that counteract the shrinkage phenomenon.

Let X denotes the current moisture content of the dried
body, and L(X) and L′(X) the distances between two par-
ticles at the stress-free state and non-zero state of stress,
respectively. Mechanical strain involved by this stress
reads

εM = L′(X) − L(X)

L(X)
= 1

E(X)
σ (13)

where Young’s modulus E(X) is a function of the current
moisture content.

Fig. 4a performs a possible stress–strain relation for a
saturated porous material. The compliance of this material
(inverse of Young’s modulus) is assumed to be a linear func-
tion of the moisture content. Thus, the Young’s modulus
depends on the moisture content in the following way:

E(X) = E0

1 + aE0(X − X0)
(14)

where E0 is the Young’s modulus for dry body of final
moisture content X0, and a the coefficient of influence of
the moisture content on the compliance. Fig. 4b illustrates
this relation for various values of coefficient a.

The boundary of the body tends to shrink during drying
but is restrained by the wet core. The boundary surface is
tensed and the core compressed. The tension stresses may

Fig. 4. Influence of sample saturation on: (a) relation between strain and stress; (b) Young’s modulus.

involve fracture on the surfaces. The tension curves for ma-
terials of different moisture content are shown in Fig. 3b.
The curve has a shape which is possible to approximate with
the sine function (see, e.g. [1,14]).

σ = σm sin

(
2πu

λ

)
(15)

where σm denotes the admissible maximal stress for the ma-
terial, u = L′ −L the displacement equivalent to the applied
stress, and λ the period of the sine function being dependent
on the moisture content.

The magnitude of σm can be quantified in terms of work
necessary to apply to the material to displace particles for
a distance of 1

2λ, at which their permanent separation takes
place. This work is expressed by the following integral:

U =
∫ λ/2

0
σ du =

∫ λ/2

0
σm sin

(
2πu

λ

)
du = λσm

π

= 2L(X)

E(X)
[σm(X)]2 (16)

where λ in the above formula was replaced by the expres-
sion derived from the condition

dσ

du

∣∣∣∣
u=0

= σm
2π

λ
= E

L
(17)

Assuming that the energy lost for plastic deformations and
reconstruction of crystal lattice during the material fracture is
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negligible, then the energy of the two newly created surfaces
2γ is, according to Griffith’s theory, equal to the applied
work U.

The above statement allows writing the yield stress as a
function of moisture content, viz.

σm(X) =
√
γE(X)

L(X)
(18)

where L(X) = L0[1 + αX(X − X0)] is the inter-particle
distance in a wet material of moisture content X, and αX the
coefficient of linear shrinkage.

The increase of the theoretical strength during drying
processes results from two reasons: increasing of Young’s
modulus, and diminishing of distances between particles.

5. Fracture

Fracture in porous media appears mostly at the tips of
flaws or pores where the stress is concentrated, see Fig. 5.
The stress σ c concentrated at the flaw tip of length c and
radius r (see e.g. [14,15]) can be written as

σc = σ(1 + 2
√
c/r) (19)

where σ is the average macroscopic stress acting on the
network.

One assumes that the fracture may occur when the stress
σ c is greater that the yield strength σm, what allows us to
write

σ >

√
γE(X)

L(X)

1

1 + 2
√
c/r

≈
√
γE(X)r

2cL(X)
(20)

The above fracture criterion is suitable for strongly tensed
boundary surfaces.

Let us consider a sample in the form of thin plate having
a thin flaw (crack) in the middle, Fig. 5b. Let the sample
be tensed with the macroscopic stress σ in the direction

Fig. 5. Concentration of stresses.

perpendicular to the flaw axis. The mechanical work supply
to the sample due to action of this stress equals the total
energy per unit thickness accumulated in the sample [2]

U = U0 − πσ 2c2

E
+ 2γ (2c) (21)

where U0 is the energy of this sample without flaw. The
second term expresses a reduction of the sample energy
because of flaw, and the third one expresses the additional
energy due to two flaw surfaces.

The flaw may increase its size spontaneously, but only
when a decrease of energy during this process takes place,
i.e. (∂U/∂c) ≤ 0. It is obvious because the negative term
in (21) contains the flaw dimension to second power, while
the flaw dimension in the third (positive) term is only to first
power.

Differentiating (21) with respect to c one can find the
critical length of the flaw ccr

ccr = 2γE

πσ 2
(22)

The fracture process will proceed spontaneously at the given
stress σ for all flaws of dimension c > ccr. Practically, one
foresees that the fracture will proceed at the yield stress σm
when dimension of the flaw equals about six interatomic
distances.

6. Experimental identification of fracture

Material fracture generates some kind of elastic waves.
Such waves appear also in saturated materials during their
drying, if the drying induced stresses exceed admissible
values. This is manifested by the emission of acoustic sig-
nals (EA) detected by the special receivers. Some signals
can be even audible for human being in a form of clicks
if the energy released by cracking is enough large, or not
audible if this energy is small. Before the macroscopic
cracks releasing high energy arise in the material, they are
preceded by the not audible ultrasonic waves generated
by micro-cracks. The registration of ultrasonic waves is
possible by very sensitive receivers after strengthening of
the acoustic signals. The method of registration of sonic
signals generated by the fracture and micro-cracking of the
structure is termed the acoustic emission method (EA).

Figs. 6–9 illustrate some results obtained from the acous-
tic emission (EA) measurements during drying process of
a cylindrical sample made of ceramic-like material. Fig. 6
presents the number Ni of acoustic signals per 30 s, emit-
ted during 220 min drying process. It is visible that during
the first 80 min the number of EA signals is great. Probably,
most of the signals are due to reformulation of the material
grains and micro-cracks. We can state so because the energy
of these EA signals in this range of drying is rather small,
as it is seen in Fig. 7. In the course of time, the number Ni

decreases (Fig. 6) but their energy (Fig. 7) increases. This is



150 S.J. Kowalski / Chemical Engineering Journal 86 (2002) 145–151

Fig. 6. Number of EA signals per 30 s versus time.

Fig. 7. Energy of EA signals per 30 s versus time.

clearly visible in Figs. 8 and 9. The former presents the total
number of EA signals, counted from the beginning of the
drying process, and latter the total amount of energy emitted
by dried material during that time. We see a rapid increase

Fig. 8. Total number of EA impulses counted from the beginning of
drying process.

Fig. 9. Total amount of energy emitted by dried material from the begin-
ning of drying process.

of EA signals in the first stage of drying and a moderate
increase in the further stage of drying. As far as it concerns
the energy, its significant increase is visible in a later stage
of drying. During the test registered in Fig. 9 the rapid in-
crease of energy took place in 150 min of drying time. The
surface macro-cracks, visible with naked eye, appeared in
this case. During optimal program of drying (not described
here) the receiver of EA did not register of higher amplitude
signals generated by the macro-cracks.

7. Final remarks

The problem of fracture during drying processes was
discussed in this paper. To describe this phenomenon the
mechanistic model of drying, that enables calculation of
the drying induced stresses, was given, and the admissible
stress for dried material at a given stage of drying process
was determined by making use the Condon–Morse interac-
tion curves. The fracture may proceed if the maximal stress
in the body overcome the admissible stress. Finally, the
acoustic emission was suggested as the method suitable for
experimental identification of fracture intensity.

Concluding, one can state that fracture is more likely if
the dried body is thick and/or the drying rate is high. These
circumstances involve great inhomogeneity in moisture
distribution and induce great stresses. The cohesion force,
on the other hand, is proportional to the body particle size
and inversely proportional to the square of the inter-particle
distance. It means that the cohesion force between body
particles decreases evidently with increase of the mois-
ture content, which causes the porous body to swell. The
cohesion forces determine the admissible stress.
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